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In this paper I attempt to generalize the Stern-Gerlach force on an elementary particle
to relativistic energies in a covariant manner. Of particular interest is the case of the
longitudinal component of force on a particle which is longitudinally polarized. The force
in this case is found to be proportional to γ; however, when integrating the energy increase
through a TE rf cavity, it is found that the energy shift is roughly proportional to 1/γ.
For static magnetic gradients, such as from the ends of a solenoid, the energy increase
from the gradient at one end of the solenoid is canceled by the opposite gradient at the
other end. As a result this increased factor of γ in the force does not appear to be terribly
useful. Alas, Maxwell and Einstein have conspired against us.

Preliminary Comments on Notation

For the this discussion I assume a flat Minkowski metric gαβ of the form

β→

α
↓




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


. (1)

The contravariant coordinates xα in vector form are:

x =



ct
x
y
z


 . (2)

The proper velocity uα is normalized to the speed of light:

u =




γc
γvx
γvy
γvz


 . (3)

The four-vector potential Aα has components

A =



φ/c
Ax
Ay
Az


 . (4)

The relativistic extension of the gradient operator in covariant form is

∂α =
∂

∂xα
, (5)
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or in vector form (
1
c
∂
∂t
−∇

)
. (6)

Another useful relation is the total derivative with respect to the proper time, τ :

∂

∂τ
= uβ∂

β = uβ
∂

∂xβ
= γ

(
∂

∂t
+ ~v · ∇

)
. (7)

The electromagnetic Faraday tensor is defined by

Fαβ = ∂αAβ − ∂βAα (8)

and has components

β→

F = α
↓




0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0


 (9)

Maxwell’s equations may be written in covariant form as

∂αF βγ + ∂βF γα + ∂γFαβ = 0, and ∂βF
αβ = 4πJα, (10)

where J is the covariant current density. The dual of the Faraday tensor

∗Fαβ = 1
2 ε
αβγδFγδ (11)

has the components

β→

∗F = α
↓




0 Bx By Bz
−Bx 0 −Ez/c Ey/c
−By Ez/c 0 −Ex/c
−Bz −Ey/c Ex/c 0


 (12)

The angular momentum density tensor is defined by

Mγαβ = xαT βγ − xβTαγ , (13)

where Tαβ is the Stress energy tensor.† The total angular momentum tensor is given by

Jαβ =

∫
M0αβ d3x

=

∫
(xαT β0 − xβTα0) d3x.

(14)

† See §§2.8 and 2.9 of Steven Weinberg, Gravitation and Cosmology, John Wiley & Sons
(1972) for a nice covariant discussion of the stress-energy tensor and spin.
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The spin or intrinsic angular momentum four vector may be obtained by

Sα = 1
2 ε
αβγδJβγuδ. (15)

Calculation of Stern-Gerlach Force by Boost

In order to calculate the Stern-Gerlach force for a moving particle with spin we first
calculate the magnetic field in the rest system of the particle in terms of the electric and
magnetic fields in the lab. The proper force is then calculated in the rest system and
finally boosted back to the lab. While one may argue about what happens to a magnetic
moment of a moving particle, this procedure eliminates such worries since the Lorentz
transformation of forces is well understood.

The contravariant derivative in the rest system† may be written in terms of the labo-
ratory system coordinates as

∂

∂x�α
=
∂

∂xβ
∂xβ

∂x�α
(16)

which has components

∂

∂t�
= γ

(
∂

∂t
+ βc

∂

∂z

)
(17a)

∂x

∂x�
=
∂

∂x
(17b)

∂x

∂y�
=
∂

∂y
(17c)

∂

∂z�
= γ

(
∂

∂z
+
β

c

∂

∂t

)
(17d)

Written in terms of the fields in the laboratory, the components of the rest frame’s
magnetic field are

B�‖ = B‖ (18a)

~B�⊥ = γ

(
~B⊥ −

~β

c
× ~E

)
. (18b)

The Stern-Gerlach force in the rest system may be written as

~F � = (µ� · ∇�) ~B�

=

[
µ�x
∂

∂x
+ µ�y

∂

∂y
+ γµ�z

(
∂

∂z
+
β

c

∂

∂t

)]
~B�.

(19)

with components

F �‖ =

[
µ�x
∂

∂x
+ µ�y

∂

∂y
+ γµ�z

(
∂

∂z
+
β

c

∂

∂t

)]
B‖ (19a)

~F �⊥ =

[
µ�x
∂

∂x
+ µ�y

∂

∂y
+ γµ�z

(
∂

∂z
+
β

c

∂

∂t

)]
γ

(
~B⊥ −

~β

c
× ~E

)
. (19b)

† Here the superscript “�” is used to specify values in the rest system of the particle.
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The four-force in the rest system is

F� =




0
F �x
F �y
F �z


 (20)

since the particle is not moving in the rest system (~v� = 0) and F�0 = ~v� · ~F � = 0. Boosting
this back to the lab gives the proper force

F =
dp

dτ
=




γ~β · ~F�
F�x
F�y
γF�z


 . (21)

In the lab has the parallel and transverse components of the force are

~F‖ = µ�x
∂B‖
∂x

+ µ�y
∂B‖
∂y

+ γµ�z

(
∂B‖
∂z

+
β

c

∂B‖
∂t

)
(21a)

~F⊥ = µ�x
∂

∂x
+ µ�y

∂

∂y
+ γµ�z

(
∂

∂z
+
β

c

∂

∂t

)(
~B⊥ −

~β

c
× ~E

)
, (21b)

which may be combined to give

~F = (~µ� · ∇) ~B +
γ − 1

β2
(~β · ~µ�)(~β · ∇) ~B +

γ

c
(~β · ~µ�)∂

~B

∂t

−
[

(~µ� · ∇)

(
~β

c
× ~E

)
+
γ − 1

β2
(~β · ~µ�)(~β · ∇)

(
~β

c
× ~E

)
+
γ

c
(~β · ~µ�)

(
~β

c
× ∂ ~E

∂t

)]
.

(22)
For longitudinal polarization (~µ� = µ�ẑ) this gives

~F = γµ�
(
∂ ~B

∂z
+
β

c

∂ ~B

∂t

)
− γµ�β

c
ẑ ×

(
∂ ~E

∂z
+
β

c

∂ ~E

∂t

)
(23)

which is proportional to γ, whereas for transverse polarization (~β · ~µ� = 0) the result
simplifies to

~F = (~µ� · ∇) ~B − (~µ� · ∇)

(
~β

c
× ~E

)
. (24)

which is not proportional to γ.
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Covariant Lagrangian for the Stern-Gerlach Force *

In order to construct a covariant Lagrangian for the Stern-Gerlach force we need to
find a covariant expression which which reduces to the energy term − ~B · ~S in the rest
system. Since there is a magnetic field in the expression we should expect to see the
antisymmetric electromagnetic Faraday tensor or its dual in the expression. A term like
FαβSβ has an ~E · ~S term for its time-like component, whereas ∗FαβSβ has a ~B · ~S term.
In the rest system the space-like components of the proper velocity are zero, so we might
expect the interaction term to be proportional to uαF

αβSβ . Since the magnetic moment

in the rest system is ~µ� = ge
2m

~S�, the expected Lagrangian should be

L(x, u; τ) =
1

2
muαuα + eAαuα +

ge

2mc
uα
∗FαβSβ , (25)

with the covariant canonical momentum components

Pα =
∂L

∂uα

= muα + eAα +
ge

2mc
∗FαβSβ .

(26)

To simplify some of the following algebra define

Aα = eAα +
ge

2mc
∗FαβSβ , (27)

so that

L(x, u; τ) =
1

2
muαuα +Aαuα, and Pα = muα +A. (28)

Variation of the action between points π1 and π2

δI = δ

∫ π2

π1

Ldτ = 0, (29)

will yield the Euler equations of motion. Since δuα = d
dτ (δuα) the variation yields

δI =

∫ π2

π1

{
(muα +Aα)

d

dτ
(δxα) + (∂αAβ)uβ δxα

}
dτ

= [(muα +Aα)δxα]|π2
π1
−
∫ π2

π1

{
−mduα

dτ
+ (∂αAβ − ∂βAα)

dxβ
dτ

}
δxα dτ

(30)

The leading expression in brackets is clearly zero since δxα(π1) = δxα(π2) = 0, therefor
the part of the integrand inside the braces must be equal to zero, so

m
duα

dτ
= uβ(∂αAβ − ∂βAα), (31)

* This treatment of the relativistic Lagrangian follows W. K. H. Panofsky and M. Phil-
lips Classical Electricity and Magnetism, Addison-Wesley (1962) but with the addition of
spin.
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or

m
duα

dτ
= eFαβuβ +

ge

2mc
(∂α∗F βγ − ∂β∗Fαγ)uβSγ . (32)

A covariant super Hamiltonian may be constructed in the usual manner

H(x, P ; τ) = Pαuα − L

=
1

2m

[
Pα − eAα − ge

2mc
∗FαβSβ

] [
Pα − eAα −

ge

2mc
∗FαγS

γ
] (33)

One should note that

H =
1

2
muαuα =

1

2
mc2, (34)

which is a nicely conserved quantity.
Let us now evaluate the proper force components from the Euler equation. With no

spin, we get the usual Lorentz force equation

d~p

dτ
= m

d~u

dτ
= γe( ~E + ~v × ~B) (35)

The Stern-Gerlach force should come from the second part of the Euler equation. The
summed product ∗F βγSγ is




0 Bx By Bz
−Bx 0 −Ez/c Ey/c
−By Ez/c 0 −Ex/c
−Bz −Ey/c Ex/c 0







~β · ~S
−Sx
−Sy
−Sz


 =

(
− ~B · ~S

−(~β · ~S) ~B − 1
c
~E × ~S

)
, (36)

and

uβ
∗F βγSγ = γc

(
1 −~β

)( − ~B · ~S
−(~β · ~S) ~B − 1

c
~E × ~S

)

= γc

[
− ~B · ~S + (~β · ~S)(~β · ~B) +

1

c
~β · ( ~E × ~S)

]
.

(37)

The three component force may be written

m
d~u

dτ
= γ ~F = γe( ~E + ~v × ~B)

+
ge

2mc

{
−γc∇

[
− ~B · ~S + (~β · ~S)(~β · ~B) +

1

c
~β · ( ~E × ~S)

]

− γ
(
∂

∂t
+ ~v · ∇

)[
−(~β · ~S) ~B − 1

c
~E × ~S

]}
(38)

~F = e( ~E + ~v × ~B) +
ge

2m

{
∇( ~B · ~S)− (~β · ~S)∇(~β · ~B)− 1

c
∇[~β · ( ~E × ~S)]

+
1

c
(~β · ~S)

∂ ~B

∂t
+

1

c2
∂ ~E

∂t
× ~S + (~β · ~S)(~β · ∇) ~B +

1

c
(~β · ∇)( ~E × ~S)

} (39)
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Remembering that ∇ × ~B = 1
c2
∂ ~E
∂t the first and fifth terms inside the braces combine to

give

∇( ~B · ~S)− 1

c2
~S × ∂ ~E

∂t
= (~S · ∇) ~B + ~S × (∇× ~B)− ~S × (∇× ~B)

= (~S · ∇) ~B,

(40)

~F = e( ~E + ~v × ~B) +
ge

2m

{
(~S · ∇) ~B + (~β · ~S)

[
−∇(~β · ~B) +

1

c

∂ ~B

∂t
+ (~β · ∇) ~B

]

+
1

c
∇[~β · (~S × ~E)]− 1

c
(~β · ∇)(~S × ~E)

} (41)

Using the identity for an arbitrary vector ~ξ:

(~β · ∇)~ξ −∇(~β · ~ξ) = ~β × (∇× ξ), (42)

the force further simplifies to

~F = e( ~E + ~v × ~B)

+
ge

2m

{
(~S · ∇) ~B − 1

c
(~S · ∇)(~β × ~E) +

1

c
(~β · ~S)

(
∂ ~B

∂t
− 1

c
~β × ∂ ~E

∂t

)}
.

(43)

The first part of this force is the usual Lorentz force on a charged particle, whereas the
second part, which is equivalent to Eq. (22), is due to the spin or magnetic moment of the
particle.

Thoughts on the deficiencies of this treatment

The BMT equation* cannot be derived from the Lagrangian of Eq. (25) or the Hamil-
tonian Eq. (33), since they are actually incomplete. In order to write a Hamiltonian for
the BMT equation, we need to have a rotational energy term simplistically something like

S2

2I
, (44)

where 1/I represents the inverse of the moment of inertia tensor. For the Lagrangian the
necessary term would simplistically look something like

1

2
Iθ̇2, (45)

where θ̇ represents the angular velocity of the particle. In special relativity, the angular
velocity may be represented by the antisymmetric tensor, Ωαβ. I have not figured out how

* V. Bargmann, Louis Michel, and V. L. Telegdi, Phys. Rev. Lett., 435, 2 (1959).
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x
Figure. 1 A simple rectangular rf cavity. The beam moves parallel to the z-axis at a height of y = b/2.

to deal with the analog of the moment of inertia, although, it may need to be a tensor of
rank four.

If the rotational energy term were included, then a constraint must be used to keep
the magnitude of the angular momentum constant, i. e. SαS

α must be held constant.
Without this constraint, we should expect that, in general, a magnetic moment can change
magnitude. If this were not the case, then transformers would not work, since the secondary
circuit may be considered to be a magnetic moment sitting in a changing EM field.

Example of a longitudinally polarized particle in a TE cavity

For a longitudinally polarized particle the relativistic equivalent of the Stern-Gerlach
force is then

~FSG = γµ�
[
∂ ~B

∂z
+
β

c

∂ ~B

∂t
− β

c
ẑ ×

(
β

c

∂ ~E

∂t
+
∂ ~E

∂z

)]
, (46)

where the direction of motion is parallel to the z-axis, and

~µ� =
ge

mc
~S�, (47)

for the magnetic moment of the particle in the rest system.
The vector potential for simple rectangular cavity with a TE0mn mode may be written

A =




0
−B0

b
mπ sin mπy

b sin nπz
l sinωt

0
0


 , (48)

8



where b is the cavity height (y-dimension) and l is the cavity length (See Fig. 1), and n
and m are positive integers. The frequency of the TE0mn mode is

f =
ω

2π
=
c

2

√(m
b

)2

+
(n
l

)2

. (49)

Since

~B = ∇× ~A, and (50a)

~B = −∂
~A

∂t
−∇φ, (50b)

the electromagnetic field components in the lab are

Ex =
bω

mπ
B0 sin

mπy

b
sin

nπz

l
cosωt (51a)

Ey = 0 (51b)

Ez = 0 (51c)

Bx = 0 (52a)

By = − nb
ml

B0 sin
mπy

b
cos

nπz

l
sinωt (52b)

Bz = B0 cos
mπy

b
sin

nπz

l
sinωt (52c)

Substituting into Eq. (46) gives

Fx = 0 (52c)

Fy = γµ�B0
b

mπ
sin

mπy

b

[(
n2π2

l2
+
β2ω2

c2

)
sin

nπz

l
sinωt

− 2
nπ

l

βω

c
cos

nπz

l
cosωt

]
(52c)

Fz = γµ�B0 cos
mπy

b

[
nπ

l
cos

nπz

l
sinωt+

βω

c
sin

nπz

l
cosωt

]
(52c)

Note that the longitudinal force along the beam axis (y = b/2) is identically zero for odd
m, so the only interesting modes are those with even m > 0.

For a particle with longitudinal magnetic moment moving along the z-axis with ve-
locity v = βc, the longitudinal component of force (for even m > 0) is

Fz = (−1)m/2γµ�B0

{
nπ

l
cos

nπz

l
sin

(
φ0 +

ωz

βc

)
+
βω

c
sin

nπz

l
cos

(
φ0 +

ωz

βc

)}

= (−1)m/2
γµ�B0

2

{
nπ

l

[
sin

(
ωl + nπβc

βcl
z + φ0

)
+ sin

(
ωl− nπβc

βcl
z + φ0

)]

+
βω

c

[
sin

(
nπβc+ ωl

βcl
z + φ0

)
+ sin

(
nπβc− ωl

βcl
z − φ0

)]}
, (53)
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where φ0 is the phase of the rf voltage when the particle enters the cavity at z = 0. The
energy increase to the particle from the cavity is then

∆U =

∫ l

0

Fz dz

= (−1)m/2
γµ�B0

2

{
nπβc

ωl + nπβc

[
cosφ0 − cos

(
ωl+ nπβc

βc
+ φ0

)]

+
nπβc

ωl− nπβc

[
cosφ0 − cos

(
ωl − nπβc

βc
+ φ0

)]

+
β2ωl

nπβc+ ωl

[
cosφ0 − cos

(
nπβc+ ωl

βc
+ φ0

)]

+
β2ωl

nπβc− ωl

[
cosφ0 − cos

(
nπβc− ωl

βc
− φ0

)]}
. (54)

In the above equation, the terms in brackets are all equivalent, i. e.,

[· · ·] = cosφ0 − (−1)n cos

(
ωl

βc
+ φ0

)
, (55)

so then energy integral simplifies to

∆U = (−1)m/2
γµ�B0

2

[
2ωlnπβc

(ωl)2 − (nπβc)2
+

2β2ωlnπβc

(nπβc)2 − (ωl)2

]

[
cosφ0 − (−1)n cos

(
ωl

βc
+ φ0

)]

= (−1)m/2
µ�B0

γ

R

1− R2

[
cosφ0 − (−1)n cos

(nπ
R

+ φ0

)]
, (56)

where, with the help of Eq. (49),

R =
nπβc

ωl
=

β√
1 +

(
ml
nb

)2 . (57)

For large γ this gives a γ dependence roughly like

1

γ

R

1− R2
=
β

√
1 +

(
ml
nb

)2

γ
(
ml
nb

)2
+ γ−1

∝ 1

γ
, (58)

since m > 0 and n > 0. The contribution from the cosine terms is just a factor between
±2.
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z

a

l
Figure. 2 A simple cylindrical cavity. The beam moves parallel to the z-axis with r = 0.

Consider now the simple cylindrical cavity† shown in Fig. 2. The TE0mn mode has a
longitudinal magnetic field of

Bz = B0 J0

(
X ′0mr
a

)
sin

nπz

l
sinωt, (59)

where X ′0m is the mth root of the Bessel function derivative J ′0(x), and m and n are positive
integers. The resonant frequency for the TE0mn mode is given by

ω = c

√√√√
(
X ′0m
a

)2

+

(
nπ

l

)2

. (60)

The longitudinal force along the axis is then

Fz = γµ�B0

{
nπ

l
cos

nπa

l
sinωt+

βω

c
sin

nπz

l
cosωt

}

=
γµ�B0

2

{
nπ

l

[
sin

(
ωl + nπβc

βcl
z + φ0

)
+ sin

(
ωl− nπβc

βcl
z + φ0

)]

+
βω

c

[
sin

(
nπβc+ ωl

βcl
z + φ0

)
+ sin

(
nπβc− ωl

βcl
z − φ0

)]}
, (61)

which is almost identical to Eq. (53) except for the initial factor of (−1)m/2. Integrating
to obtain the work done by the cavity field gives

∆U = (−1)m/2
µ�B0

γ

R

1− R2

[
cosφ0 − (−1)n cos

(nπ
R

+ φ0

)]
, (62)

with

R =
nπβc

ωl
=

β√
1 +

(
X′0ml
nπa

)2
. (63)

† Samuel Y. Liao, Microwave Devices and Circuits, Prentice Hall (1985).
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The γ-dependence is again similar to Eq. (58):

1

γ

R

1− R2
=
β

√
1 +

(
X′0ml
nb

)2

γ
(
X′0ml
nπa

)2

+ γ−1

∝ 1

γ
, (64)

since X ′0m 6= 0.

Revisions

1 Some typographical errors have been corrected in Eqs. (21a& b).
2 Changed J0(x) to J ′0(x) in first line after Eq. (59).
3 Replaced ~x by ξ just before Eq. (42).
4 Replaced “covariant coordinates” by “contravariant contravariant” on first page to

match the standard definition.
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